Collecting Twitter Data using the twitteR package in Rstudio

Collecting Twitter Data using the twitteR package in Rstudio

Last week, I wrote a blog post about collecting data using Tweepy in Python. Like usual, I decided to recreate my work in R, so that I can compare my experience using different analytical tools. I will walk you through what I did, but I assume that you already have Rstudio installed. If not, and you wish to follow along, here’s a link to a good resource that explains how to download and install Rstudio.

Begin by loading the following libraries–download them if you don’t have them already installed.

#To download:
#install.packages(c("twitteR", "purrr", "dplyr", "stringr"),dependencies=TRUE)

library(twitteR)
library(purrr)
suppressMessages(library(dplyr))
library(stringr)

Next, initiate the OAuth protocol. This of course assumes that you have registered your Twitter app. If not, here’s a link that explains how to do this.


api_key <- "your_consumer_api_key"
api_secret <-"your_consumer_api_secret"
token <- "your_access_token"
token_secret <- "your_access_secret"

setup_twitter_oauth(api_key, api_secret, token, token_secret)

Now you can use the package twitteR to collect the information that you want. For example, #rstats or #rladies <–great hashtags to follow on Twitter, btw 😉

tw = searchTwitter('#rladies + #rstats', n = 20)

which will return a list of (20) tweets that contain the two search terms that I specified:

RstatsRlaides

*If you want more than 20 tweets, simply increase the number following n=

Alternatively, you can collect data on a specific user. For example, I am going to collect tweets from this awesome R-Lady, @Lego_RLady:

Again, using the twitteR package, type the following:


LegoRLady <- getUser("LEGO_RLady") #for info on the user
RLady_tweets<-userTimeline("LEGO_RLady",n=30,retryOnRateLimit=120) #to get tweets
tweets.df<-twListToDF(RLady_tweets) #turn into data frame
write.csv(tweets.df, "Rlady_tweets.csv", row.names = FALSE) #export to Excel

Luckily, she only has 27 tweets total. If you are collecting tweets from a user that has been on Twitter for longer, you’ll likely have to use a loop to continue collecting every tweet because of the rate limit. If you export to Excel, you should see something like this:
Excel

*Note: I bolded the column names and created the border to help distinguish the data

If you’re interested in the retweets and replies to @LEGO_RLady, then you can search for that specifically. To limit the amount of data, let’s limit it to any replies since the following tweet:

target_tweet<-"991771358634889222"
atRLady <- searchTwitter("@LEGO_RLady", 
                       sinceID=target_tweet, n=25, retryOnRateLimit = 20)
atRLady.df<-twListToDF(atRLady)

The atRLady.df data frame should look like this:

atRlady

There’s much more data if you scroll right. You should have 16 variables total.

Sometimes there are characters in the tweet that result in errors. To make sure that the tweet is in plain text, you can do the following:

replies <- unlist(atRLady) #make sure to use the list and not the data frame

#helper function to remove characters:
clean_tweets <- function (tweet_list) {
  lapply(tweet_list, function (x) {
    x <- x$getText() # get text alone
    x <- gsub("&amp", "", x) # rm ampersands
    x <- gsub("(f|ht)(tp)(s?)(://)(.*)[.|/](.*) ?", "", x) # rm links
    x <- gsub("#\\w+", "", x) # rm hashtags
    x <- gsub("@\\w+", "", x) # rm usernames
    x <- iconv(x, "latin1", "ASCII", sub="") # rm emojis
    x <- gsub("[[:punct:]]", "", x) # rm punctuation
    x <- gsub("[[:digit:]]", "", x) # rm numbers
    x <- gsub("[ \t]{2}", " ", x) # rm tabs
    x <- gsub("\\s+", " ", x) # rm extra spaces
    x <- trimws(x) # rm leading and trailing white space
    x <- tolower(x) # convert to lower case
  })
}
tweets_clean <- unlist(clean_tweets(replies))
# If you want to rebombine the text with the metadata (user, time, favorites, retweets)
tweet_data <- data.frame(text=tweets_clean)
tweet_data <- tweet_data[tweet_data$text != "",]
tweet_data<-data.frame(tweet_data)
tweet_data$user <-atRLady.df$screenName
tweet_data$time <- atRLady.df$created
tweet_data$favorites <- atRLady.df$favoriteCount
tweet_data$retweets <- atRLady.df$retweetCount
tweet_data$time_bin <- cut.POSIXt(tweet_data$time, breaks="3 hours", labels = FALSE)
tweet_data$isRetweet <- atRLady.df$isRetweet

You can pull other information from the original data frame as well, but I don’t find that information very helpful since it is usually NA (e.g., latitude and longitude). The final data frame should look like this:

cleantweets

Now you can analyze it. For example, you can graph retweets for each reply

library(ggplot2)
ggplot(data = tweet_data, aes(x = retweets)) +
  geom_bar(aes(fill = ..count..)) +
  theme(legend.position = "none") +
  xlab("Retweets") +
  scale_fill_gradient(low = "midnightblue", high = "aquamarine4")
dev.copy(png,'myplot.png')
dev.off()

myplot

If you have more data, you can conduct a sentiment analysis of all the words in the text of the tweets or create a wordcloud (example below)

BigDataWordMap-1264x736

Overall, using R to collect data from Twitter was really easy. Honestly, it was pretty easy to do in Python too. However, I must say that the R community is slightly better when it comes to sharing resources and blogs that make it easy for beginners to follow what they’ve done. I really love the open source community and I’m excited that I am apart of this movement!

PS- I forgot to announce that I am officially an R-Lady (see directory)! To all my fellow lady friends, I encourage you to join!

 

 

Advertisements

Mining Data from Twitter (and replies to Tweets) with Tweepy

Mining Data from Twitter (and replies to Tweets) with Tweepy

I recently met someone who is interested in mining data from Twitter. In addition to mining data from Twitter however, they’re also interested in collecting all of the replies. I thought that I would try giving it a shot and sharing what I learn.

Note: This post assumes that Python is installed on your computer. If you haven’t installed Python, this Python Wiki walks you through the process.

To scrape tweets from Twitter, I recommend using Tweepy, but there are several other options. To install tweepy:

pip install tweepy

*Note: If your environments are configured like mine, you may need to type: conda install -c conda-forge tweepy

Now, go to Twitter’s developer page to register your app (you will have to sign in with your username and password, or sign up with a new username). You should see a button on the right-hand side of the page that says “Create New App.” Fill out the necessary fields (i.e. name of the app; it’s description; your website) and then check the box that says you agree to their terms, which I linked to above. If you don’t have a publicly accessible website, just list the web address that is hosting your app (e.g., link to your school profile; link to your work website). You can likely ignore the Callback URL field, unless you are allowing users to log into your app to authenticate themselves. In which case, enter the URL where they would be returned after they’ve given permission to Twitter to use your app.

After registering your app, you should see a page where you can create your access token. Click the “Create my access token” button. If you don’t see this button after a few seconds, refresh the page. The next page will ask you what type of access you need. For this example, we will need Read, Write, and Access Direct Messages. Now, note your OAuth settings, particularly your Consumer Key, Consumer Secret, OAuth Access Token, and OAuth Access Token Secret. Don’t share this information with anyone!

Next, import tweepy and use the OAuth interface to collect data.

import tweepy
from tweepy import OAuthHandler

consumer_key = 'YOUR-CONSUMER-KEY'
consumer_secret = 'YOUR-CONSUMER-SECRET'
access_token = 'YOUR-ACCESS-TOKEN'
access_secret = 'YOUR-ACCESS-SECRET'

auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_secret)

api = tweepy.API(auth,  wait_on_rate_limit=True)

To collect tweets that are currently being shared on Twitter. For example, tweets that are under “StarwarsDay”. Note that I’ve asked Python to format the tweets by first listing the the user and screen name, and then their tweet. If you want ALL the meta data, remove the specifications that I wrote.

#you'll need to import json to run this script
import json
class PrintListener(tweepy.StreamListener):
    def on_data(self, data):
        # Decode the JSON data
        tweet = json.loads(data)

        # Print out the Tweet
        print('@%s: %s' % (tweet['user']['screen_name'], tweet['text'].encode('ascii', 'ignore')))

    def on_error(self, status):
        print(status)


if __name__ == '__main__':
    listener = PrintListener()

    # Show system message
    print('I will now print Tweets containing "StarWarsDay"! ==>')

    # Authenticate
    auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
    auth.set_access_token(access_token, access_secret)

    # Connect the stream to our listener
    stream = tweepy.Stream(auth, listener)
    stream.filter(track=['StarWarsDay'], async=True)

Here’s a brief glimpse of what I got:

I will now print Tweets containing "StarWarsDay"! ==>
@Amanda33441401: b'RT @givepennyuk: This #StarWarsDay we want you to feel inspired by the force to think up a Star Wars fundraiser!\n\n  Star Wars Movie Marat'
@jin_keapjjang: b'RT @HamillHimself: People around the world are marking #StarWarsDay in spectacular style. #MayThe4thBeWithYou https://t.co/BM02D965Xa via @'
@Bradleyg1996G: b'RT @NHLonNBCSports: MAY THE PORGS BE WITH YOU\n\n#StarWarsDay #MayThe4thBeWithYou https://t.co/HWAmptYND5'
@thays_jeronimo: b"RT @g1: 'May the 4th'  celebrado por fs de 'Star Wars' https://t.co/ggNhaEQCPV #MayThe4thBeWithYou #StarWarsDay #G1 https://t.co/wUY74DZL"
@DF_SomersetKY: b"If you're a fan of the franchise, you're going to love all of this Star Wars gear for your car! Tweet us your favor https://t.co/PteAtqS1Ui"
@zakrhssn: b'RT @williamvercetti: #StarWarsDay https://t.co/fgHZzTZ0Fm'
@kymaticaa: b'RT @Electric_Forest: May The Forest be with you.  #ElectricForest #StarWarsDay #StarWars https://t.co/bfQnZHI8eX'
@hullodave: b'"Only Imperial Stormtroopers are this precise" How precise? Not very? But why? Science! #StarWarsDay https://t.co/niZ2h6ssnp'

To store the data you just collected, rather than printing it, you’ll have to add some extra code (see text in red)

import csv
import json
class PrintListener(tweepy.StreamListener):
    def on_data(self, data):
        # Decode the JSON data
        tweet = json.loads(data)

        # Print out the Tweet
        print('@%s: %s' % (tweet['user']['screen_name'], tweet['text'].encode('ascii', 'ignore')))

        with open('StarWarsDay.csv','a') as f:
                f.write(data)
        except:
            pass

    def on_error(self, status):
        print(status)


if __name__ == '__main__':
    listener = PrintListener()

    # Show system message
    print('I will now print Tweets containing "StarWarsDay"! ==>')

    # Authenticate
    auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
    auth.set_access_token(access_token, access_secret)

    # Connect the stream to our listener
    stream = tweepy.Stream(auth, listener)
    stream.filter(track=['StarWarsDay'], async=True)

Now, let’s see if it’s possible to get replies to a tweet. I checked these users (listed above) and none of them have any replies. So I decided to just search #StarWarsDay on Twitter instead. I immediately found the twitter handle for Arrested Development, which has replies (at the time of this writing 9) to their tweet that includes #StarWarsDay:

Look at the hyperlink: [“https://twitter.com/bluthquotes/status/992433028155654144”%5D
You can see that the user we are interested in is @bluthquotes and that the id for this particular tweet is “992433028155654144”

To get tweets from just @bluthquotes, you would type

bluthquotes_tweets = api.user_timeline(screen_name = 'bluthquotes', count = 100)

for status in bluthquotes_tweets:
print(status)

To see all the replies to @bluthquotes tweet posted above:


replies=[] 
non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd)  

for full_tweets in tweepy.Cursor(api.user_timeline,screen_name='bluthquotes',timeout=999999).items(10):
  for tweet in tweepy.Cursor(api.search,q='to:bluthquotes', since_id=992433028155654144, result_type='recent',timeout=999999).items(1000):
    if hasattr(tweet, 'in_reply_to_status_id_str'):
      if (tweet.in_reply_to_status_id_str==full_tweets.id_str):
        replies.append(tweet.text)
  print("Tweet :",full_tweets.text.translate(non_bmp_map))
  for elements in replies:
       print("Replies :",elements)
  replies.clear()

*Note: change the .items(10) line to get more replies. Remember that Twitter limits you to 100 per hour (at least at the time of this writing).

This is what I got:

Tweet : @HulkHogan You ok hermano?
Tweet : Go see a Star War #MayTheForceBeWithYou #StarWarsDay https://t.co/OLcmCAEl30
Replies : @bluthquotes @mlot11
Replies : @bluthquotes Oh my yes
Replies : @bluthquotes Star Wars needs more gay characters #jarjarXobama
Replies : @bluthquotes @TheSAPeacock May the 4th be with you!!!!
Replies : @bluthquotes @SaraAnneGill
Replies : @bluthquotes @kurkobains Por q xuxa la sacaron de #Netflix
Replies : @bluthquotes  https://t.co/Qv4KJJ6dFU
Replies : @bluthquotes @hiagorecanello
Replies : @bluthquotes No it’s #CincoDeCuatro
Replies : @bluthquotes @auburnhays 😂
Replies : @bluthquotes Go see a Star War on Cinco de Quatro! 🤠🌶️🍹
Replies : @bluthquotes @jmdroberts
Tweet : RT @arresteddev: Hey, hermanos! It's Cinco de Cuatro! Season 4 Remix is now streaming. https://t.co/Alw0Z2Zwlm
Tweet : Keep fighting little guy #StarWarsDay  #MayThe4thBeWithYou https://t.co/Uim4D2BP49
Replies : @bluthquotes "worth every penny"
Replies : @bluthquotes You’re still doin’ that?
Replies : @bluthquotes Im crying 😭
Replies : @bluthquotes @theJdog 😂😂😂😂😂
Tweet : @JTHM8008 @herooine @JeffEisenband @ZachAJacobson I say HUZZAH! like this at least 5 times a week.
Tweet : @herooine @JeffEisenband @ZachAJacobson Checks out ✅
Tweet : @gjb512 It’s there already. Huzzah!
Tweet : @drkatiemd_ @MitchHurwitz It’s a wonderful program!
Tweet : I prematurely blue myself  #EmbarrassmentIn4Words https://t.co/QYUFeSKFT2
Tweet : @sebastrivi @VICE @arresteddev I’m not on board

You can see that it’s not quite what I wanted, which is just the responses to the Star Wars tweet (see red text). According to the API reference page, there should be a way to limit the returned text to the replies to the specific tweet we are interested, but I will have to continue tinkering with it. I’ll post an update when I figure it out.