The US fertility heat maps that I made a couple of weeks ago received a lot of attention and one of the questions I’ve been asked is how I produced it, which I describe in this post.

As I mentioned in my previous post, I simply followed the directions specified in this article, but I limited the UN data to the US. Overall, I think the article does a good job of explaining how they created their heat map in Tableau. The reason why I remade the heat map in R is because I was just frustrated with the process of trying to embed the visualization into WordPress. Both Tableau and WordPress charge you to embed visualizations in a format that is aesthetically pleasing. Luckily, recreating the heat map in R was extremely easy and just as pretty, at least in my opinion. Here’s how I did it:

First, download the data from the UN website–limit the data to the US only. Alternatively, I’ve linked to the (formatted) data on my OSF account, which also provides access to my code.

Now type the following in Rstudio:

#load libraries:
#if you need to install first, type: install.packages("package_name",dependencies=TRUE)

#set your working directory to the folder your data is stored in
setwd("C:/Users/Stella/Documents/blog/US birth Map")
#if you don't know what directory is currently set to, type: getwd()

#now import your data
us_fertility<-read.csv("USBirthscsv.csv", header=TRUE) #change the file name if you did not use the data I provided (

#limit to relevant data
dta% select(Year, January:December)

#gather (i.e., "aggregate") data of interest, in preparation for graphing

#orderring the data by most frequent incidence of births
dta %>%
group_by(Year) %>%

#plot the data
plot<- ggplot(bb2, aes(x =fct_rev(Month),
y = Year,
fill=rank)) +
scale_x_discrete(name="Months", labels=c("Jan", "Feb", "Mar",
"Apr", "May","Jun",
"Jul", "Aug", "Sep",
"Oct", "Nov", "Dec")) +
scale_fill_viridis(name = "Births", option="magma") + #optional command to change the colors of the heat map
geom_tile(colour = "White", size = 0.4) +
labs(title = "Heat Map of US Births",
subtitle = "Frequency of Births from 1969-2014",
x = "Month",
y = "Year",
caption = "Source: UN Data") +

plot+ aes(x=fct_inorder(Month))

#if you want to save the graph
dev.copy(png, "births.png")

And that’s it! Simple, right?!


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s